Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Environ Toxicol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654489

RESUMO

Lipotoxicity leads to numerous metabolic disorders such as nonalcoholic steatohepatitis. Luteolin, apigenin, and chrysin are three flavones with known antioxidant and anti-inflammatory properties, but whether they inhibit lipotoxicity-mediated NLRP3 inflammasome activation was unclear. To address this question, we used J774A.1 macrophages and Kupffer cells stimulated with 100 µM palmitate (PA) in the presence or absence of 20 µM of each flavone. PA increased p-PERK, p-IRE1α, p-JNK1/2, CHOP, and TXNIP as well as p62 and LC3-II expression and induced autophagic flux damage. Caspase-1 activation and IL-1ß release were also noted after 24 h of exposure to PA. In the presence of the PERK inhibitor GSK2656157, PA-induced CHOP and TXNIP expression and caspase-1 activation were mitigated. Compared with PA treatment alone, Bcl-2 coupled to beclin-1 was elevated and autophagy was reversed by the JNK inhibitor SP600125. With luteolin, apigenin, and chrysin treatment, PA-induced ROS production, ER stress, TXNIP expression, autophagic flux damage, and apoptosis were ameliorated. Moreover, TXNIP binding to NLRP3 and IL-1ß release in response to LPS/PA challenge were reduced. These results suggest that luteolin, apigenin, and chrysin protect hepatic macrophages against PA-induced NLRP3 inflammasome activation and autophagy damage by attenuating endoplasmic reticulum stress.

2.
Eur J Pharmacol ; : 176373, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38341079

RESUMO

BACKGROUND: Oxidative stress and inflammatory cytokines in the hypothalamus paraventricular nucleus (PVN) have been implicated in sympathetic nerve activity and the development of hypertension, but the specific mechanisms underlying their production in the PVN remains to be elucidated. Previous studies have demonstrated that activation of nuclear transcription related factor-2 (Nrf2) in the PVN reduced the production of reactive oxygen species (ROS) and inflammatory mediators. Moreover, AMP-activated protein kinase (AMPK), has been observed to decrease ROS and inflammatory cytokine production when activated in the periphery. 5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) is an AMPK agonist. However, little research has been conducted on the role of AMPK in the PVN during hypertension. Therefore, we hypothesized that AICAR in the PVN is involved in regulating AMPK/Nrf2 pathway, affecting ROS and inflammatory cytokine expression, influencing sympathetic nerve activity. METHODS: Adult male Sprague-Dawley rats were utilized to induce two-kidney, one-clip (2K1C) hypertension via constriction of the right renal artery. Bilateral PVN was microinjected with either artificial cerebrospinal fluid or AICAR once a day for 4 weeks. RESULTS: Compared to the SHAM group, the PVN of 2K1C hypertensive rats decreased p-AMPK and p-Nrf2 expression, increased Fra-Like, NAD(P)H oxidase (NOX)2, NOX4, tumor necrosis factor-α and interleukin (IL)-1ß expression, elevated ROS levels, decreased superoxide dismutase 1 and IL-10 expression, and elevated plasma norepinephrine levels. Bilateral PVN microinjection of AICAR significantly ameliorated these changes. CONCLUSION: These findings suggest that repeated injection of AICAR in the PVN suppresses ROS and inflammatory cytokine production through the AMPK/Nrf2 pathway, reducing sympathetic nerve activity and improving hypertension.

3.
Nutr Res ; 121: 95-107, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056034

RESUMO

Tumor necrosis factor α (TNFα), an inflammatory cytokine, induces lipolysis and increases circulating concentrations of free fatty acids. In addition, TNFα is the first adipokine produced by adipose tissue in obesity, contributing to obesity-associated metabolic disease. Given that benzyl isothiocyanate (BITC) is a well-known anti-inflammatory agent, we hypothesized that BITC can ameliorate TNFα-induced lipolysis and investigated the working mechanisms involved. We first challenged 3T3-L1 adipocytes with TNFα to induce lipolysis, which was confirmed by increased glycerol release, decreased protein expression of peroxisome proliferator-activated receptor γ (PPARγ) and perilipin 1 (PLIN1), and increased phosphorylation of ERK, protein kinase A (PKA), and hormone-sensitive lipase (HSL). However, inhibition of ERK or PKA significantly attenuated the lipolytic activity of TNFα. Meanwhile, pretreatment with BITC significantly ameliorated the lipolytic activity of TNFα; the TNFα-induced phosphorylation of ERK, PKA, and HSL; the TNFα-induced ubiquitination of PPARγ; the TNFα-induced decrease in PPARγ nuclear protein binding to PPAR response element; and the TNFα-induced decrease in PLIN1 protein expression. Our results indicate that BITC ameliorates TNFα-induced lipolysis by inhibiting the ERK/PKA/HSL signaling pathway, preventing PPARγ proteasomal degradation, and maintaining PLIN1 protein expression.


Assuntos
Esterol Esterase , Fator de Necrose Tumoral alfa , Animais , Camundongos , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Esterol Esterase/metabolismo , Lipólise , Células 3T3-L1 , PPAR gama/metabolismo , Transdução de Sinais , Fosforilação , Adipócitos/metabolismo , Obesidade/metabolismo , Perilipina-1/metabolismo
4.
Eur J Med Chem ; 264: 116039, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38103540

RESUMO

P-glycoprotein (P-gp) is an important factor leading to multidrug resistance (MDR) in cancer treatment. The co-administration of anticancer drugs and P-gp inhibitors has been a treatment strategy to overcome MDR. In recent years, tyrosine kinase inhibitor Lapatinib has been reported to reverse MDR through directly interacting with ABC transporters. In this work, a series of P-gp inhibitors (1-26) was designed and synthesized by integrating the quinazoline core of Lapatinib into the molecule framework of the third-generation P-gp inhibitor Tariquidar. Among them, compound 14 exhibited better MDR reversal activity than Tariquidar. The docking results showed compound 14 displayed the L-shaped molecular conformation. Importantly, compound 14 increased the accumulation of Adriamycin (ADM) and rhodamine 123 (Rh123) in MCF7/ADM cells. Besides, compound 14 significantly increased ADM-induced apoptosis and inhibited the proliferation, migration and invasion of MCF7/ADM cells. It was also demonstrated that compound 14 significantly inhibited the growth of MCF7/ADM xenograft tumors by increasing the sensitivity of ADM. In summary, compound 14 has the potential to overcome MDR caused by P-gp.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Antineoplásicos , Humanos , Lapatinib , Resistencia a Medicamentos Antineoplásicos , Resistência a Múltiplos Medicamentos , Antineoplásicos/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Doxorrubicina/farmacologia , Benzamidas/farmacologia
5.
Nutrients ; 15(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38068849

RESUMO

Oral cancer ranks sixth among Taiwan's top 10 cancers and most patients with poor prognosis acquire metastases. The essential fatty acid alpha-linolenic acid (ALA) has been found to diminish many cancer properties. However, the anti-cancer activity of ALA in oral cancer has yet to be determined. We examined the mechanisms underlying ALA inhibition of metastasis and induction of apoptotic cell death in oral squamous cell carcinoma (OSCC). Migration and invasion assays confirmed the cancer cells' EMT capabilities, whereas flow cytometry and Western blotting identified molecular pathways in OSCC. ALA dramatically reduced cell growth in a concentration-dependent manner according to the findings. Low concentrations of ALA (100 or 200 µM) inhibit colony formation, the expression of Twist and EMT-related proteins, the expression of MMP2/-9 proteins, and enzyme activity, as well as cell migration and invasion. Treatment with high concentrations of ALA (200 or 400 µM) greatly increases JNK phosphorylation and c-jun nuclear accumulation and then upregulates the FasL/caspase8/caspase3 and Bid/cytochrome c/caspase9/caspase3 pathways, leading to cell death. Low concentrations of ALA inhibit SAS and GNM cell migration and invasion by suppressing Twist and downregulating EMT-related proteins or by decreasing the protein expression and enzyme activity of MMP-2/-9, whereas high concentrations of ALA promote apoptosis by activating the JNK/FasL/caspase 8/caspase 3-extrinsic pathway and the Bid/cytochrome c/caspase 9 pathway. ALA demonstrates potential as a treatment for OSCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ácido alfa-Linolênico/farmacologia , Citocromos c , Linhagem Celular Tumoral , Apoptose , Proliferação de Células , Movimento Celular , Transição Epitelial-Mesenquimal
6.
Hum Vaccin Immunother ; 19(3): 2285089, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38111106

RESUMO

Vaccination plays a key role in preventing morbidity and mortality caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We aimed to evaluate the safety and immunogenicity of a SARS-CoV-2 messenger ribonucleic acid (mRNA) vaccine SYS6006. In the two randomized, observer-blinded, placebo-controlled phase 1 trials, 40 adult participants aged 18-59 years and 40 elderly participants aged 60 years or more were randomized to receive two doses of SYS6006 or placebo (saline). Adverse events (AEs) were collected through 30 days post the second vaccination. Immunogenicity was assessed by live-virus neutralizing antibody (Nab), spike protein (S1) binding antibody (S1-IgG), and cellular immunity. The result showed that 7/15, 9/15 and 4/10 adult participants, and 9/15, 8/15 and 4/10 elderly participants reported at least one AE in the 20-µg, 30-µg and placebo groups, respectively. Most AEs were grade 1. Injection-site pain was the most common AE. Two adults and one elder reported fever. No vaccination-related serious AE was reported. SYS6006 elicited wild-type Nab response with a peak geometric mean titer of 232.1 and 130.6 (adults), and 48.7 and 66.7 (elders), in the 20-µg and 30-µg groups, respectively. SYS6006 induced moderate-to-robust Nab response against Delta, and slight Nab response against Omicron BA.2 and BA.5. Robust IgG response against wild type and BA.2 was observed. Cellular immune response was induced. In conclusion, two-dose primary vaccination with SYS6006 demonstrated good safety and immunogenicity during a follow-up period of 51 days in immunologically naive population aged 18 years or more. (Trial registry: Chictr.org.cn ChiCTR2200059103 and ChiCTR2200059104).


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Idoso , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , China , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Método Duplo-Cego , Imunogenicidade da Vacina , Imunoglobulina G , Vacinas de mRNA , RNA Mensageiro , SARS-CoV-2 , Vacinação , Adolescente , Adulto Jovem , Pessoa de Meia-Idade
7.
Am J Chin Med ; 51(8): 2175-2193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37930331

RESUMO

Andrographolide (AND) is a bioactive component of the herb Andrographis paniculata and a well-known anti-inflammatory agent. Atherosclerosis is a chronic inflammatory disease of the vasculature, and oxidized LDL (oxLDL) is thought to contribute heavily to atherosclerosis-associated inflammation. The aim of this study was to investigate whether AND mitigates oxLDL-mediated foam cell formation and diet-induced atherosclerosis (in mice fed a high-fat, high-cholesterol, high-cholic acid [HFCCD] diet) and the underlying mechanisms involved. AND attenuated LPS/oxLDL-mediated foam cell formation, IL-1[Formula: see text] mRNA and protein (p37) expression, NLR family pyrin domain containing 3 (NLRP3) mRNA and protein expression, caspase-1 (p20) protein expression, and IL-1[Formula: see text] release in BMDMs. Treatment with oxLDL significantly induced protein and mRNA expression of CD36, lectin-like oxLDL receptor-1 (LOX-1), and scavenger receptor type A (SR-A), whereas pretreatment with AND significantly inhibited protein and mRNA expression of SR-A only. Treatment with oxLDL significantly induced ROS generation and Dil-oxLDL uptake; however, pretreatment with AND alleviated oxLDL-induced ROS generation and Dil-oxLDL uptake. HFCCD feeding significantly increased aortic lipid accumulation, ICAM-1 expression, and IL-1[Formula: see text] mRNA expression, as well as blood levels of glutamic pyruvic transaminase (GPT), total cholesterol, and LDL-C. AND co-administration mitigated aortic lipid accumulation, the protein expression of ICAM-1, mRNA expression of IL-1[Formula: see text] and ICAM-1, and blood levels of GPT. These results suggest that the working mechanisms by which AND mitigates atherosclerosis involve the inhibition of foam cell formation and NLRP3 inflammasome-dependent vascular inflammation as evidenced by decreased SR-A expression and IL-1[Formula: see text] release, respectively.


Assuntos
Aterosclerose , Inflamassomos , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL , Células Espumosas/metabolismo , Receptores Depuradores , Inflamação/metabolismo , Colesterol/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/etiologia , Aterosclerose/metabolismo , RNA Mensageiro/metabolismo , Interleucina-1/metabolismo
8.
Anim Biotechnol ; 34(9): 5124-5138, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37850850

RESUMO

Ensuring improved leg health is an important prerequisite for broilers to achieve optimal production performance and welfare status. Broiler leg disease is characterized by leg muscle weakness, leg bone deformation, joint cysts, arthritis, femoral head necrosis, and other symptoms that result in lameness or paralysis. These conditions significantly affect movement, feeding and broiler growth performance. Nowadays, the high incidence of leg abnormalities in broiler chickens has become an important issue that hampers the development of broiler farming. Therefore, it is imperative to prevent leg diseases and improve the health of broiler legs. This review mainly discusses the current prevalence of broiler leg diseases and describes the risk factors, diagnosis, and prevention of leg diseases to provide a scientific basis for addressing broiler leg health problems.


Assuntos
Galinhas , Doenças das Aves Domésticas , Animais , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/etiologia , Doenças das Aves Domésticas/prevenção & controle , Marcha/fisiologia
9.
Biomed Pharmacother ; 167: 115440, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683595

RESUMO

The discovery of new therapeutic strategies for diseases is essential for drug research. Deoxyhypusine synthase (DHPS) is a critical enzyme that modifies the conversion of the eukaryotic translation initiation factor 5A (eIF5A) precursor into physiologically active eIF5A (eIF5A-Hyp). Recent studies have revealed that the hypusine modifying of DHPS on eIF5A has an essential regulatory role in human diseases. The hypusination-induced DHPS/eIF5A pathway has been shown to play an essential role in various cancers, and it could regulate immune-related diseases, glucose metabolism-related diseases, neurological-related diseases, and aging. In addition, DHPS has a more defined substrate and a well-defined structure within the active pocket than eIF5A. More and more researchers are focusing on the prospect of advanced development of DHPS inhibitors. This review summarizes the regulatory mechanisms of the hypusination-induced DHPS/eIF5A pathway in a variety of diseases in addition to the inhibitors related to this pathway; it highlights and analyzes the structural features and mechanisms of action of DHPS inhibitors and expands the prospects of future drug development using DHPS as an anticancer target.

10.
Environ Sci Pollut Res Int ; 30(41): 93731-93743, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37515622

RESUMO

The gastrointestinal microbiota, a complex ecosystem, is involved in the physiological activities of hosts and the development of diseases. Birds occupy a critical ecological niche in the ecosystem, performing a variety of ecological functions and possessing a complex gut microbiota composition. However, the gut microbiota of wild and captive birds has received less attention in the same region. We profiled the fecal gut microbiome of wild wintering whooper swans (Cygnus Cygnus; Cyg group, n = 25), captive black swans (Cygnus Atratus; Atr group, n = 20), and mute swans (Cygnus Olor; Olor group, n = 30) using 16S rRNA gene sequencing to reveal differences in the gut microbial ecology. The results revealed that the three species of swans differed significantly in terms of the alpha and beta diversity of their gut microbiota, as measured by ACE, Chao1, Simpson and Shannon indices, principal coordinates analysis (PCoA) and non-metricmulti-dimensional scaling (NMDS) respectively. Based on the results of the linear discriminant analysis effect size (LEfSe) and random forest analysis, we found that there were substantial differences in the relative abundance of Gottschalkia, Trichococcus, Enterococcus, and Kurthia among the three groups. Furthermore, an advantageous pattern of interactions between microorganisms was shown by the association network analysis. Among these, Gottschalkia had the higher area under curve (AUC), which was 0.939 (CI = 0.879-0.999), indicating that it might be used as a biomarker to distinguish between wild and captive black swans. Additionally, PICRUSt2 predictions indicated significant differences in gut microbiota functions between wild and captive trumpeter swans, with the gut microbiota functions of Cyg group focusing on carbohydrate metabolism, membrane transport, cofactor, and vitamin metabolism pathways, the Atr group on lipid metabolism, and the Olor group on cell motility, amino acid metabolism, and replication and repair pathways. These findings showed that the gut microbiota of wild and captive swans differed, which is beneficial to understand the gut microecology of swans and to improve regional wildlife conservation strategies.


Assuntos
Anseriformes , Microbioma Gastrointestinal , Animais , Áreas Alagadas , Ecossistema , RNA Ribossômico 16S , Aves , Patos , China
11.
Phytomedicine ; 118: 154951, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453193

RESUMO

BACKGROUND: Hypertension has seriously affected a large part of the adult and elderly population. The complications caused by hypertension are important risk factors for cardiovascular disease accidents. Capsaicin, a pungent component of chili pepper has been revealed to improve hypertension. However, its potential mechanism in improving hypertension remains to be explored. PURPOSE: In the present study, we aimed to investigate whether capsaicin could attenuate the SIRT1/NF-κB/MAPKs pathway in the paraventricular nucleus of hypothalamus (PVN). METHODS: We used spontaneous hypertensive rats (SHRs) as animal model rats. Micro osmotic pump was used to give capsaicin through PVN for 28 days, starting from age12-week-old. RESULTS: The results showed that capsaicin significantly reduced blood pressure from the 16th day of infusion onward. At the end of the experimental period, we measured cardiac hypertrophy index and the heart rate (HR), and the results showed that the cardiac hypertrophy and heart rate of rats was significantly improved upon capsaicin chronic infusion. Norepinephrine (NE) and epinephrine (EPI) in plasma of SHRs treated with capsaicin were also decreased. Additionally, capsaicin increased the protein expression and number of positive cells of SIRT1 and the 67-kDa isoform of glutamate decarboxylase (GAD67), decreased the production of reactive oxygen species (ROS), number of positive cells of NOX2, those of Angiotensin Converting Enzyme (ACE) and p-IKKß, tyrosine hydroxylase (TH), the gene expression levels of NOX4 and pro-inflammatory cytokines. Capsaicin also decreased the relative protein expressions of protein in MAPKs pathway. CONCLUSION: Current data indicated that capsaicin within the PVN improves hypertension and cardiac hypertrophy via SIRT1/NF-κB/MAPKs pathway in the PVN of SHRs, supporting its potential as candidate drug for preventing and improving hypertension.


Assuntos
Hipertensão , NF-kappa B , Idoso , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Núcleo Hipotalâmico Paraventricular , Capsaicina/farmacologia , Sirtuína 1/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Ratos Endogâmicos SHR
12.
Front Microbiol ; 14: 1117384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925469

RESUMO

Introduction: Soil microorganisms are the key factors in elucidating the effects of thinning on tree growth performance, but the effects of vegetation and soil on the species composition and function of soil microorganisms after thinning are still not well elaborated. Methods: The effects of thinning on understory vegetation diversity, soil physicochemical properties and soil microbial community composition were investigated in a thinning trial plantation of Cryptomeria japonica var. sinensis, including four thinning intensities (control: 0%, LIT: 20%, MIT: 30% and HIT: 40%), and the relationships of the microbial community structure with the understory vegetation diversity and soil properties were assessed. Results: The results showed that thinning had a greater effect on the diversity of the shrub layer than the herb layer. The soil bulk density and the contents of soil organic matter, total potassium and nitrogen increased with increasing thinning intensities. The Shannon and Chao indices of soil bacteria and fungi were significantly lower in the LIT, MIT and HIT treatments than in the control. Thinning can significantly increase the abundance of Proteobacteria and Actinobacteria, and higher thinning intensities led to a higher relative abundance of Ascomycota and a lower relative abundance of Basidiomycota, Rozellomycota, and Mortierellomycota. Redundancy analysis indicated that soil physicochemical properties rather than understory vegetation diversity were the main drivers of microbial communities, and fungi were more sensitive to soil properties than bacteria. Functional prediction showed that thinning significantly reduced the potential risk of human diseases and plant pathogens, and the nitrogen fixation capacity of bacteria was the highest in the HIT treatment. Thinning significantly increased the relative abundance of cellulolysis and soil saprotrophs in bacteria and fungi. Conclusion: The findings provide important insights into the effects of thinning on C. japonica var. sinensis plantation ecosystems, which is essential for developing thinning strategies to promote their ecological and economic benefits.

13.
Curr Med Sci ; 43(2): 274-283, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36913109

RESUMO

OBJECTIVE: Intrauterine growth restriction followed by postnatal catch-up growth (CG-IUGR) increases the risk of insulin resistance-related diseases. Low-density lipoprotein receptor-related protein 6 (LRP6) plays a substantial role in glucose metabolism. However, whether LRP6 is involved in the insulin resistance of CG-IUGR is unclear. This study aimed to explore the role of LRP6 in insulin signaling in response to CG-IUGR. METHODS: The CG-IUGR rat model was established via a maternal gestational nutritional restriction followed by postnatal litter size reduction. The mRNA and protein expression of the components in the insulin pathway, LRP6/ß-catenin and mammalian target of rapamycin (mTOR)/S6 kinase (S6K) signaling, was determined. Liver tissues were immunostained for the expression of LRP6 and ß-catenin. LRP6 was overexpressed or silenced in primary hepatocytes to explore its role in insulin signaling. RESULTS: Compared with the control rats, CG-IUGR rats showed higher homeostasis model assessment for insulin resistance (HOMA-IR) index and fasting insulin level, decreased insulin signaling, reduced mTOR/S6K/ insulin receptor substrate-1 (IRS-1) serine307 activity, and decreased LRP6/ß-catenin in the liver tissue. The knockdown of LRP6 in hepatocytes from appropriate-for-gestational-age (AGA) rats led to reductions in insulin receptor (IR) signaling and mTOR/S6K/IRS-1 serine307 activity. In contrast, LRP6 overexpression in hepatocytes of CG-IUGR rats resulted in elevated IR signaling and mTOR/S6K/IRS-1 serine307 activity. CONCLUSION: LRP6 regulated the insulin signaling in the CG-IUGR rats via two distinct pathways, IR and mTOR-S6K signaling. LRP6 may be a potential therapeutic target for insulin resistance in CG-IUGR individuals.


Assuntos
Retardo do Crescimento Fetal , Resistência à Insulina , Insulina , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteínas Quinases S6 Ribossômicas , Animais , Feminino , Humanos , Ratos , beta Catenina/genética , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Receptor de Insulina/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
14.
Am J Hypertens ; 36(6): 306-315, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-36738296

RESUMO

BACKGROUND: Hydrogen sulfide (H2S) is widely distributed throughout the nervous system with various antioxidant and anti-inflammatory properties. Hypertension involves an increase in reactive oxygen species (ROS) and inflammation in the hypothalamic paraventricular nucleus (PVN). However, it is unclear how H2S in PVN affects hypertension. METHODS: Our study used spontaneously hypertensive rats (SHR) and control Wistar Kyoto (WKY) rats, microinjected with adenovirus-associated virus (AAV)-CBS (cystathionine beta-synthase overexpression) or AAV-ZsGreen in bilateral PVN, or simultaneously injected with virus-carrying nuclear factor erythroid 2-related factor 2 (Nrf2)-shRNA for 4 weeks. Blood pressure (BP) and plasma noradrenaline level were detected, and the PVN was collected. Finally, levels of CBS, H2S, Nrf2, Fra-LI, ROS, gp91phox, p47phox, superoxide dismutase 1, interleukin (IL)-1ß, IL-6, IL-10, tumor necrosis factor-α, tyrosine hydroxylase, and glutamate decarboxylase 67 were measured. RESULTS: We found that AAV-CBS increased H2S in the PVN, and BP, neuronal activation, oxidative stress, and inflammation of PVN were substantially reduced. Furthermore, endogenous H2S in the PVN activated Nrf2 and corrected the PVN's imbalance of excitatory and inhibitory neurotransmitters. However, Nrf2 knockdown in the PVN was similarly observed to abolish the beneficial effect of H2S on hypertension. CONCLUSIONS: The findings imply that endogenous H2S in SHR PVN is reduced, and PVN endogenous H2S can alleviate hypertension via Nrf2-mediated antioxidant and anti-inflammatory effects.


Assuntos
Sulfeto de Hidrogênio , Hipertensão , Ratos , Animais , Anti-Hipertensivos/uso terapêutico , Ratos Endogâmicos SHR , Núcleo Hipotalâmico Paraventricular/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Ratos Endogâmicos WKY , Anti-Inflamatórios/farmacologia , Inflamação/metabolismo
15.
Nutrients ; 15(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36771206

RESUMO

BACKGROUND: Luteolin is widely distributed among a number of vegetal species worldwide. The pharmacological effects of luteolin are diverse and amongst antioxidant, free radical scavenging, and anti-inflammatory activities. Preliminary study showed that luteolin can ameliorate hypertension. However, the precise mechanism needs further investigation. There is no evidence that luteolin affects the paraventricular nucleus of the hypothalamus (PVN), a brain nucleus associated with a critical neural regulator of blood pressure. Our main aim was to explore the effect of luteolin on the PI3K/Akt/NF-κB signaling pathway within the PVN of hypertensive rats. METHODS: spontaneously hypertensive rats (SHRs) and corresponding normotensive control rats, the Wistar Kyoto (WKY) rats were divided into four groups and subsequently treated for 4 weeks with bilateral PVN injections of either luteolin (20 µg/0.11 µL, volume: 0.11 µL/h) or vehicle (artificial cerebrospinal fluid). RESULTS: luteolin infusion to the PVN significantly decreased some hemodynamic parameters including the mean arterial pressure (MAP), heart rate (HR), circulating plasma norepinephrine (NE) and epinephrine (EPI). Additionally, there was a decrease in the expressions of the phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT), levels of reactive oxygen species (ROS), NAD(P)H oxidase subunit (NOX2, NOX4) in the PVN of SHRs. Meanwhile, the expression of inflammatory cytokines and the activity of nuclear factor κB (NF-κB) p65 in the PVN of SHRs were lowered. Furthermore, immunofluorescence results showed that injection of luteolin in the PVN reduced the expression of tyrosine hydroxylase (TH), and increased that of superoxide dismutase (SOD1) and the 67-kDa isoform of glutamate decarboxylase (GAD67) in the PVN of SHRs. CONCLUSION: Our novel findings revealed that luteolin lowered hypertension via inhibiting NF-κB-mediated inflammation and PI3K/Akt signaling pathway in the PVN.


Assuntos
Hipertensão , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Luteolina/farmacologia , Luteolina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Endogâmicos WKY , Transdução de Sinais , Ratos Endogâmicos SHR , Inflamação/metabolismo , Sistema Nervoso Simpático
16.
NPJ Biofilms Microbiomes ; 9(1): 1, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596826

RESUMO

Tibial dyschondroplasia (TD) with multiple incentives is a metabolic skeletal disease that occurs in fast-growing broilers. Perturbations in the gut microbiota (GM) have been shown to affect bone homoeostasis, but the mechanisms by which GM modulates bone metabolism in TD broilers remain unknown. Here, using a broiler model of TD, we noted elevated blood glucose (GLU) levels in TD broilers, accompanied by alterations in the pancreatic structure and secretory function and damaged intestinal barrier function. Importantly, faecal microbiota transplantation (FMT) of gut microbes from normal donors rehabilitated the GM and decreased the elevated GLU levels in TD broilers. A high GLU level is a predisposing factor to bone disease, suggesting that GM dysbiosis-mediated hyperglycaemia might be involved in bone regulation. 16S rRNA gene sequencing and short-chain fatty acid analysis revealed that the significantly increased level of the metabolite butyric acid derived from the genera Blautia and Coprococcus regulated GLU levels in TD broilers by binding to GPR109A in the pancreas. Tibial studies showed reduced expression of vascular regulatory factors (including PI3K, AKT and VEFGA) based on transcriptomics analysis and reduced vascular distribution, contributing to nonvascularization of cartilage in the proximal tibial growth plate of TD broilers with elevated GLU levels. Additionally, treatment with the total flavonoids from Rhizoma drynariae further validated the improvement in bone homoeostasis in TD broilers by regulating GLU levels through the regulation of GM to subsequently improve intestinal and pancreatic function. These findings clarify the critical role of GM-mediated changes in GLU levels via the gut-pancreas axis in bone homoeostasis in TD chickens.


Assuntos
Microbioma Gastrointestinal , Osteocondrodisplasias , Animais , Osteocondrodisplasias/terapia , Osteocondrodisplasias/veterinária , Osteocondrodisplasias/metabolismo , Tiram , Galinhas , RNA Ribossômico 16S , Homeostase , Glucose
17.
Am J Chin Med ; 51(1): 129-147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36419253

RESUMO

Andrographolide is the major bioactive component of the herb Andrographis paniculata and is a potent anti-inflammatory agent. Obesity leads to an excess of free fatty acids, particularly palmitic acid (PA), in the circulation. Obesity also causes the deposition of ectopic fat in nonadipose tissues, which leads to lipotoxicity, a condition closely associated with inflammation. Here, we investigated whether andrographolide could inhibit PA-induced inflammation by activating autophagy, activating the antioxidant defense system, and blocking the activation of the NLRP3 inflammasome. Bone marrow-derived macrophages (BMDMs) were primed with lipopolysaccharide (LPS) and then activated with PA. LPS/PA treatment increased both the mRNA expression of NLRP3 and IL-1[Formula: see text] and the release of IL-1[Formula: see text] in BMDMs. Andrographolide inhibited the LPS/PA-induced protein expression of caspase-1 and the release of IL-1[Formula: see text]. Furthermore, andrographolide attenuated LPS/PA-induced mtROS generation by first promoting autophagic flux and catalase activity, and ultimately inhibiting activation of the NLRP3 inflammasome. Our results suggest that the mechanisms by which andrographolide downregulates LPS/PA-induced IL-1[Formula: see text] release in BMDMs involve promoting autophagic flux and catalase activity. Andrographolide may thus be a candidate to prevent obesity- and lipotoxicity-driven chronic inflammatory disease.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/efeitos adversos , Catalase/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Antioxidantes/metabolismo , Interleucina-1/metabolismo , Camundongos Endogâmicos C57BL
18.
Food Chem Toxicol ; 171: 113554, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36509263

RESUMO

Abnormal accumulation of lipids in liver leads to uncontrolled endoplasmic reticulum (ER) stress and autophagy. Luteolin is known to have antioxidant, anti-inflammatory, and anti-cancer properties, but whether it protects against lipotoxicity in liver remains unclear. In this study, we challenged AML12 liver cells and mouse primary hepatocytes with palmitic acid (PA) with or without luteolin pretreatment. In the presence of PA, reactive oxygen species (ROS) production was increased at 3 h, followed by enhancement of expression of p-PERK, ATF4, p-eIF2α, CHOP, and TXNIP (ER stress markers) and p-p62 and LC3II/LC3I ratio (autophagy markers), in both primary hepatocytes and AML12 cells. When PA treatment was extended up to 24 h, apoptosis was induced as evidenced by an increase in caspase-3 activation. RFP-GFP-LC3B transfection further revealed that the fusion of autophagosomes with lysosomes was damaged by PA. With luteolin treatment, the expression of antioxidant enzymes, i.e., heme oxygenase-1 and glutathione peroxidase, was upregulated, and PA-induced ROS production, ER stress, and cell death were dose-dependently ameliorated. Luteolin could also reverse the damage caused to autophagic flux. These results indicate that luteolin protects hepatocytes against PA assault by enhancing antioxidant defense, which can attenuate ER stress and autophagy as well as promote autophagic flux.


Assuntos
Luteolina , Palmitatos , Camundongos , Animais , Luteolina/metabolismo , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Hepatócitos/metabolismo , Estresse do Retículo Endoplasmático , Ácido Palmítico/farmacologia , Autofagia , Apoptose
20.
Nutrients ; 14(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36235619

RESUMO

BACKGROUND: Aerobic exercise training (ExT) is beneficial for hypertension, however, its central mechanisms in improving hypertension remain unclear. Since the importance of the up-regulation of angiotensin II type 1 receptor (AT-1R) in the paraventricular nucleus (PVN) of the hypothalamic in sympathoexcitation and hypertension has been shown, we testified the hypothesis that aerobic ExT decreases blood pressure in hypertensive rats by down-regulating the AT-1R through reactive oxygen species (ROS)/mitogen-activated protein kinase (MAPK)/nuclear factors κB (NF-κB) pathway within the PVN. METHODS: Forty-eight male Sprague-Dawley (SD) rats were assigned to the following groups: sham operation (SHAM) + kept sedentary (Sed), SHAM + exercise training (ExT), two kidney-one clamp (2K1C) + Sed, and 2K1C + ExT groups. RESULTS: The 2K1C + Sed hypertensive rats showed higher systolic blood pressure (SBP), upregulated ROS, phosphorylated (p-) p44/42 MAPK, p-p38 MAPK, NF-κB p65 activity, and AT-1R expression in the PVN, and increased circulating norepinephrine (NE) than those of SHAM rats. After eight weeks of aerobic ExT, the 2K1C + ExT hypertensive rats showed attenuated NE and SBP levels, suppressed NF-κB p65 activity, and reduced expression of ROS, p-p44/42 MAPK, p-p38 MAPK, and AT-1R in the PVN, relatively to the 2K1C + Sed group. CONCLUSIONS: These data are suggestive of beneficial effects of aerobic ExT in decreasing SBP in hypertensive rats, via down-regulating the ROS/MAPK/NF-κB pathway that targets AT-1R in the PVN, and eventually ameliorating 2K1C-induced hypertension.


Assuntos
Hipertensão , Núcleo Hipotalâmico Paraventricular , Condicionamento Físico Animal , Animais , Masculino , Ratos , Hipertensão/prevenção & controle , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Norepinefrina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Sistema Nervoso Simpático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...